ACADEMIC CALENDAR : SESSION- (2023-2024)

NAME OF TEACHER: DR. POONAM BAJPAI

DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: BSC (NEP)-I YEAR (I SEMESTER) (APPLICABLE FROM JULY 2023)

S.NO.	CLASS	PAPER	UNIT	TOPIC NAME	MONTHLY /	TEACHING	LEARNING	ANY OTHER
	(YEAR, SEMESTER)				WEEKLY PLAN	PEDAGOGY	OUTCOMES	DETAIL
01	02	03	04	05	06	07	08	09
VI	02	05	04	0.5	00	07	00	0)
			Course Ou	tcomes: 1. Know the concepts of cal	culus, namely, 1	imits, continuity, differe	entiability of function	ons of one and two
1	BSC (NEP)	P-1		nd their applications in the form of me				
	_		2. Sketch cu	arves in a plane using its mathematic	al properties in the	he different coordinate s	ystems of reference	2.
	I YEAR,	(MAJOR)	3. Apply de	rivatives in Optimization, Social scie	ences, Physics ar	nd Life sciences etc.		
	I	(1,111,001()	4. Get knov	vledge of curvature, asymptotes, enve	elopes and evolu			
	SEMESTER	DIFFERENTIAL		Limit, continuity and	MIN.	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE	EVALUATION THROUGH
	CREDITS-4	CALCULUS	UNIT-I	differentiability of function of	09	METHOD	UNDERSTANDING	MONTHLY MOCK
	CKEDI15-4			single variable, Cauchy's	LECTURES	(NOTES IN FORM OF PDF.AUDIO/	OF THE TOPIC DISCUSSED.	TESTS AND ASSIGNMENTS
	T:04			definition, Heine's definition,		VIDEO,CLASS ROOM	DISCUSSED.	AND
				Uniform continuity, Borel's		TEACHING METHOD)		DISCUSSIONS
				theorem, boundedness theorem,				THROUGH WHICH WE ASSESS AND
				Bolzano's theorem, Intermediate				EVALUATE THE
				value theorem, extreme value				PERFORMANCE
				theorem, Darboux's intermediate				
				value theorem for derivatives,				
				Chain rule, indeterminate forms.		OFFLINE TEACHING	STUDENTS WILL	EVALUATION
			************	Rolle's theorem, Lagrange and	MIN	METHOD	GET THE	THROUGH
			UNIT-II	Cauchy Mean value theorems,	09		UNDERSTANDING	MONTHLY MOCK
				mean value theorems of higher	LECTURES	(NOTES IN FORM OF PDF,AUDIO/	OF THE TOPIC DISCUSSED.	TESTS AND ASSIGNMENTS
				order, Taylor's theorem with		VIDEO,CLASS ROOM	DISCUSSED.	AND
				various forms of remainders,		TEACHING METHOD)		DISCUSSIONS
								THROUGH WHICH

	Successive differentiation, Leibnitz theorem, Maclaurin's and Taylor's series, Limit and Continuity of functions of two variables, Differentiation of function of two variables, Necessary and sufficient condition for differentiability of functions two variables.				WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-III	Partial differentiation, Euler's theorem on homogeneous function, Schwarz's and Young theorem, Taylor's theorem for functions of two variables with examples, Maxima and minima for functions of two variables, Lagrange multiplier method, Jacobians, Inverse function theorem and implicit function theorem.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-IV	Tangents and normals, Asymptotes, Curvature, Envelops and evolutes, Tests for concavity and convexity, Points of inflexion, Multiple points, Parametric representation of curves and tracing of parametric curves, Tracing of curves in Cartesian and Polar forms.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
2. S. Balac Suggeste		al Calculus, Ne S. Davis, Calcu	ulus, John Wiley and Sor	ns, Inc.,2002. 4.	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

			https://oper http://heec	rences: 1.Digital platforms web links alearninglibrary.mit/edu/courses ontent.upsdc.gov.in/SearchContent.a.	<u>spx</u>	•	x.org	
			•	w.lkouniv.ac.in/en/article/e-content-f	<u> </u>			
2	BSC (NEP) I YEAR, I SEMESTER CREDITS-4	P-2 (MAJOR)	2. Study the 3. Recogniz 4. Link the 5. Analyze 6. Explain	atcomes: 1. Find the rank and eigen very system of linear homogeneous and eigen was the mathematical objects that are grandamental concepts of Groups and the subgroups of cyclic groups. The significance of the notion of coset and the concepts of rings, subrings an Elementary operations on	non-homogeneo groups, and class symmetrical fig ts, normal subgr	ous equations. sify them as abelian, cycl gures.	lic and permutation	groups, etc.
	T:04	MATRICES & ALGEBRA	UNIT-1	matrices, Rank of a matrix, Echelon and normal form of a matrix, Inverse of a matrix by elementary operations, System of linear homogeneous and non- homogeneous equations, Theorems on consistency of a system of linear equations. Eigen values, Eigen vectors and characteristic equation of a matrix, Cayley-Hamilton theorem and its use in finding inverse of a matrix.	MIN 09 LECTURES	METHOD (NOTES IN FORM OF PDF, AUDIO/VIDEO, CLASS ROOM TEACHING METHOD)	GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			UNIT-II	Equivalence relations and partitions, Congruence modulo n, Definition of a group with examples and simple properties, Subgroups, Generators of a group, Cyclic groups, Coset decomposition, Lagrange's theorem and its consequences, Fermat and Euler theorems.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

UNIT-II Isomorphism, Fundamental theorem of homomorphism, Permutation groups, Even and odd permutations, The alternating group, Cayley's theorem, Direct products. VINIT-IV		Normal subgroups, Quotient groups.				
UNIT-IV (commutative rings, rings with unity, division rings, Integral domains and fields) with examples, basic properties, subrings, Characteristic of a ring, Ideals and quotient rings, Ring homomorphism theorems, Field of quotient of an integral domain, polynomial rings. References: Text Books: 1. Linear Algebra by K. Hoffman and R. Kunze. 2. V. Sahai and V. Bist, Algebra, Narosa Suggested Readings: 3. J.B. Fraleigh, A First Course in Abstract Algebra, Pearson 4. I.N. Herstein, Topics in Algebra, John Wiley & Sons Web References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org	UNIT-III	isomorphism, Fundamental theorem of homomorphism, Theorems on isomorphism, Permutation groups, Even and odd permutations, The alternating group, Cayley's theorem, Direct	09	METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM	GET THE UNDERSTANDING OF THE TOPIC	MONTHLY MOCK TESTS AND ASSIGNMENTS
Text Books: 1. Linear Algebra by K. Hoffman and R. Kunze. 2. V. Sahai and V. Bist, Algebra, Narosa Suggested Readings: 3. J.B. Fraleigh, A First Course in Abstract Algebra, Pearson 4. I.N. Herstein, Topics in Algebra, John Wiley & Sons Web References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org	UNIT-IV	(commutative rings, rings with unity, division rings, Integral domains and fields) with examples, basic properties, subrings, Characteristic of a ring, Ideals and quotient rings, Ring homomorphism, Isomorphism theorems, Field of quotient of an	09	METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM	GET THE UNDERSTANDING OF THE TOPIC	MONTHLY MOCK TESTS AND ASSIGNMENTS
http://heecontent.upsdc.gov.in/SearchContent.aspx https://www.lkouniv.ac.in/en/article/e-content-faculty-of-science	Fext Books 1. Linear Al 2. V. Sahai Suggested 1 Γopics in A Web Referently https://oper	lgebra by K. Hoffman and R. Kunze and V. Bist, Algebra, Narosa Readings: 3. J.B. Fraleigh, A First Olgebra, John Wiley & Sons ences: Digital platforms web links: Inlearninglibrary.mit/edu/courses ontent.upsdc.gov.in/SearchContent.a	Course in Abstra NPTEL/SWAY	AM/ MOOCS/Openstax		EVALUATION THROUGH

3	BSC (NEP)	P- 1	Course Out	comes:				
3	BSC (NEP) I YEAR, I SEMESTER CREDITS-4 T:04	P-1 (MINOR) APPLICABLE MATHEMATIC S- I	1. To compose vectors and 2. To Know value theore 3. To unders	their applications. the concepts of calculus, namely, liminated the concepts of calculus, namely, liminated the concept of double and triple stand the concepts of vector calculus. Types of matrices, elementary operations on matrices, rank of a matrix, echelon and normal forms of a matrix by elementary operations, systems of linear homogeneous and nonhomogeneous equations, consistency of linear system of equations, eigenvalues, eigenvectors and characteristic equation of a square matrix, Cayley - Hamilton theorem and its application in finding the inverse of a matrix.	its, continuity,differe	ntiability of functions and the	eir applications in	the form of mean umes etc. EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS
			UNIT-II	Limit, continuity and differentiability of functions of single variable, successive differentiation, Leibnitz's theorem, Rolle's theorem, Lagrange's and Cauchy's mean value theorems, Taylor's and Maclaurins's series with various forms of remainders.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTA NDING OF THE TOPIC DISCUSSED .	ASSIGNMENTS

UNI	Limit, continuity and differentiability of functions of two variables, partial derivatives, Euler's theorem for homogeneous functions, total derivative, Taylor's and Maclaurins's theorem for functions of two variables, extrema of functions of two variables, Lagrange's method of unknown multipliers, Jacobian.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTA NDING OF THE TOPIC DISCUSSED	EVALUATE THE PERFORMANCE EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNI	change of order of integration, application of integration to length, surface and volumes (only Cartesian coordinates), beta, gamma and Dirichlet's integral — basic properties with applications, vector differentiation, gradient, divergence and curl with their physical interpretations, tangent and normal on a surface, directional derivative, line, surface and volume integrals, applications of Green's, Stoke's and Gauss'	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTA NDING OF THE TOPIC DISCUSSED .	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

		divergence theorems (without proofs).								
		proofs).								
	References	•	<u> </u>	<u>I</u>	<u>I</u>	FINAL				
	Textbooks					EVALUATION				
	1. Linear A	Linear Algebra by K. Hoffman and R. Kunze.								
	2. Calculus, Volumes I & II by T. M. Apostol.									
	3. Mathematical Analysis by S.C. Malik and S. Arora, New Age International									
	Limited, Ne	UPLODED ON								
	00	Suggested Books L								
	1. R. R. Go	PORTAL								
	2. R. G. Bar	rtle, The Elements of Real Analys	is, Wiley Internation	nal Edition.						

ACADEMIC CALENDAR : SESSION- (2023-2024)

NAME OF TEACHER: DR. POONAM BAJPAI

DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: BSC (NEP)-I YEAR (II SEMESTER) (APPLICABLE FROM JANUARY 2024)

S.NO.	CLASS (YEAR, SEMESTER)	PAPER	UNIT	TOPIC NAME	MONTHLY/W EEKLY PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL
01	02	03	04	05	06	07	08	09
1	BSC (NEP) - I YEAR, I I SEMESTER CREDITS-4	P-3 (MAJOR) INTEGRAL CALCULUS	theorems of 2. Beta and 3. The valid approximation approximation of the control o	utcomes: If the families and properties of Rie of integration. If Gamma functions and their properties of Rie of integration. If Gamma functions and their properties of situations for the inter-changeal tion of transcendental functions in the of solids by integrating over cross	erties. pility of different naterms of power	ntiability and integrabler series. 4. Compute a	ility with infinite	sum, and
	T:04		UNIT-I	Definite integrals as limit of the sum, Riemann integral, Integrability of continuous and monotonic functions, Fundamental theorem of integral calculus, Mean value theorems of integral calculus, Differentiation under the sign of Integration.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			UNIT-II	Improper integrals, their classification and convergence, Comparison test, µtest, Abel's test, Dirichlet's test, quotient test, Beta and Gamma functions.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE

								PERFORMANCE			
			UNIT-III	Rectification, Volumes and Surfaces of Solid of revolution, Pappus theorem, Multiple integrals, change of order of double integration, Dirichlet's theorem, Liouville's theorem for multiple integrals.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE			
			UNIT-IV	Vector Differentiation, Gradient, Divergence and Curl, Normal on a surface, Directional Derivative, Vector Integration, Theorems of Gauss, Green, Stokes and related problems. MIN 09 LECTURES (NOTES IN FORM OF PDF, AUDIO/ VIDEO, CLASS ROOM TEACHING METHOD) STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.							
	DCC (NIED)		2. Shanti N Suggested Sons. Web Refe https://ope http://heec https://ww	xt Books: Γ.M. Apostol, Calculus Vol. II, John Wiley Publication. Shanti Narayan, P.K. Mittal, Integral Calculus, S. Chand. ggested Readings: 3. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley &							
2	BSC (NEP) – I YEAR,	P-4	1. To lear	Course Outcomes: 1. To learn and visualize the fundamental ideas of coordinate geometry.							
	I I SEMESTER	(MAJOR)		To describe some surfaces by using analytical geometry. To gain knowledge about regular geometrical figures and their properties.							

CREDITS-4 T:04	GEOMETRY	UNIT-I	General equation of second degree, System of conics, Tracing of conics, Confocal conics, Polar equation of conics and its properties.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILLGET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
		UNIT-II	Three-Dimensional Coordinates, Projection and Direction Cosine, Plane (Cartesian and vector form), Straight line in three dimension (Cartesian and vector form).	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
		UNIT-III	Sphere, Cone and Cylinder.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
		UNIT-IV	Central conicoids, Paraboloids, Plane section of conicoids, Generating lines, Confocal conicoids, Reduction of second degree equation.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

			2. S. L. Suggest 3. Rober Ltd Web Re https://o		Coordinate Geomet ks: NPTEL/SWAY	ry of three dimensions, YAM/ MOOCS/Opensta		FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL
3	BSC (NEP) – I YEAR, I I SEMESTER CREDITS-4 T:04	P-2 (MINOR) APPLICABL E MATHEMAT ICS-II	1. To und groups. 2. To Kno 3. To kno transform	erstand the concepts of groups, subgrow the concepts of rings, subrings, id we the concept of vector spaces, its basic ations. In sequences and various tests to check the Equivalence relations and partitions, congruence modulo n, groups, subgroups, cyclic groups, coset decomposition, Lagrange's theorem, Fermat's & Euler's theorems, normal subgroups, quotient groups, homomorphism and homomorphism theorems. Rings, types of rings - commutative rings, rings with unity, division rings, integral	leals, quotient rings asis and dimension	s and homomorphism of , quotient space and line	rings.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE EVALUATION THROUGH MONTHLY MOCK TESTS AND
				domains and fields, subrings, ideals and quotient rings, ring homomorphism and homomorphism theorems, characteristic of a ring,		PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	DISCUSSED.	ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

	Polynomial rings.					
UNIT- IV	Vector spaces, subspaces, linear independence and dependence, basis and dimension, quotient space, linear transformations and their representation as matrices, rank - nullity theorem.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	
UNIT- IV	Sequences, limit of a sequence, convergence, divergence and oscillation of a sequence, infinite series and its convergence, geometric and harmonic series, tests for convergence and divergence - comparison test, Cauchy integral test, D'alembert's ratio test, Cauchy's nth root test, Raabe's logarithmic test, DeMorgan and Bertrand's test, alternating series, absolute and conditional convergence, Leibnitz's theorem (without proof).	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	
Reference Textbook 1. V. Sah 2. J.A. Ga 3. R.G. B Suggeste	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL					
Suggested books 1. J.B. Fraleigh: A First course in Abstract Algebra, Pearson.						

2. D.S. Dummit & R.M. Foote : Abstract Algebra, Wiley International edition.	

ACADEMIC CALENDAR : SESSION- (2023-2024)

NAME OF TEACHER: DR. POONAM BAJPAI

DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: BSC (NEP)-II YEAR (III SEMESTER) (APPLICABLE FROM SEPTEMBER 2023)

S.NO.	CLASS (YEAR,	PAPER	UNIT	TOPIC NAME	MONTHLY / WEEKLY	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL			
	SEMESTER)				PLAN						
01	02	03	04	05	06	07	08	09			
			Course O	<mark>utcomes:</mark>							
1	BSC (NEP)	P-5	1. Formulat	e Differential Equations for various N	Mathematical mo	odels.					
				st order non-linear differential equation			oher order using va	rious techniques			
	II YEAR,	(MAJOR)		_		•	sher order using var	nous teeninques.			
	111	(MAJOK)	3. Apply th	Apply these techniques to solve and analyze various mathematical models.							
	SEMESTER			Diff. (i. 1 E.); f. f.		OFFLINE TEACHING	STUDENTS WILL	EVALUATION			
		ORDINARY	*******	Differential Equations of first	MIN.	METHOD	GET THE	THROUGH			
	CREDITS-4	DIFFERENTIAL	UNIT-I	order and first degree, variable	09		UNDERSTANDING	MONTHLY MOCK			
		EQUATIONS		separable equations and equations	LECTURES	(NOTES IN FORM OF	OF THE TOPIC	TESTS AND			
	T:04			reducible to this form, linear		PDF,AUDIO/ VIDEO,CLASS ROOM	DISCUSSED.	ASSIGNMENTS AND			
				equations and Bernoulli equations,		TEACHING METHOD)		DISCUSSIONS			
				Exact differential equations and				THROUGH WHICH			
				integrating factors, special				WE ASSESS AND EVALUATE THE			
				integrating factors and				PERFORMANCE			
				transformations. Differential							
				Equations of first order and higher							
				degree, Clairaut equation, singular							
				solutions. Orthogonal trajectories.							
				Linear Differential Equations with		OFFLINE TEACHING	STUDENTS WILL	EVALUATION			
			UNIT-II	constant coefficients,	MIN 09	METHOD	GET THE	THROUGH			
				homogeneous linear equation with	09 LECTURES	(NOTES IN FORM OF	UNDERSTANDING OF THE TOPIC	MONTHLY MOCK TESTS AND			
				constant coefficients, Wronskian,	LLCTORLD	PDF,AUDIO/	DISCUSSED.	ASSIGNMENTS			
				Constant Coefficients, Wionskian,		VIDEO,CLASS ROOM		AND			

	its properties and applications. Second order linear differential equations with variable coefficients: Use of a known solution to find another, normal form, method of undetermined coefficient, variation of parameters,		TEACHING METHOD)		DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
UNIT-III	Systems of first order equations, linear systems, homogeneous linear systems with constant coefficients, Volterra's prey predator equations, Existence and uniqueness of solutions, method of successive approximations, Picard's theorem, Application to systems of first order equations.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
UNIT-IV	Series solutions of differential equations, Power series method. Bessel, Legendre and Hypergeometric functions and their properties, recurrence and generating relations.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
1. B. Rai, I 2. S. L Ros Suggested 3. G.F. Sim McGraw H	References: Text Books: 1. B. Rai, D.P. Choudhary & H.J. Freedman, A Course in Differential Equations. 2. S. L Ross, Differential Equations, 3rd Edition, Wiley Suggested Reading: 3. G.F. Simmons, Differential Equations with Applications and Historical Notes, Tata McGraw Hill Web References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org						

				<u>penlearninglibrary.mit/edu/co</u>				
			http://he	econtent.upsdc.gov.in/SearchC	Content.aspx			
			https://v	www.lkouniv.ac.in/en/article	e/e-content-f	Caculty-of-science		
2	BSC (NEP)	P-6	Course O	utcomes: ificance of mathematics involved in p	ohysical quantiti	es and their uses.		
	II YEAR,	(MAJOR)	2. To unde forces.	rstanding the various concepts of b	asic mechanics	like simple harmonic r	notion, motion und	ler other laws and
	III		3. To study	and to learn the cause-effect related	to these.			
	SEMESTER		4. The appl	ications in observing and relating rea	l situations/struc	ctures.		
	CREDITS-4 T:04	MECHANICS	UNIT-1	Frame of reference, work energy principle, Forces in three dimensions, Poinsot's central axis,	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC	EVALUATION THROUGH MONTHLY MOCK TESTS AND
				Wrenches, Null lines and planes.		PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	DISCUSSED.	ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			UNIT-II	Virtual work, Stable and Unstable equilibrium, Catenary, Catenary of uniform strength.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			UNIT-III	Velocities and accelerations along radial and transverse directions, and along tangential and normal directions, Simple Harmonic motion, Motion under other law of forces. Elastic strings, Motion in resisting medium, Constrained motion, Motion on smooth and	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

			UNIT-IV	rough plane curves. Motion of particles of varying mass, Rocket motion, Central orbit, Kepler's laws of motion, Motion of particle in three dimensions, Rotating frame of reference, Rotating Earth, Acceleration in terms of different coordinates systems.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			2. Nelson, I Suggested 3. J.L. Syng Web Refe https://op http://he		Cata McGraw Hi hanics, Tata Mc inks: NPTEL/S urses Content.aspx	:Graw Hill SWAYAM/ MOOCS/0	Openstax.org	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL
3	3. Recognize the mathematical objects that are groups, and classify them as abelian, cyclic and permutation groups, HINOR) SEMESTER 3. Recognize the mathematical objects that are groups, and classify them as abelian, cyclic and permutation groups, 4. Link the fundamental concepts of Groups and symmetrical figures. 5. Analyze the subgroups of cyclic groups. 6. Explain the significance of the notion of cosets, normal subgroups, and factor group. 7. Understand the concepts of rings, subrings and fields.							
	T:04	MATRICES & ALGEBRA	UNIT-1	Elementary operations on matrices, Rank of a matrix, Echelon and normal form of a matrix, Inverse of a matrix by elementary operations, System of linear homogeneous and non-homogeneous equations,	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE

UNI	Theorems on consistency of a system of linear equations. Eigen values, Eigen vectors and characteristic equation of a matrix, Cayley-Hamilton theorem and its use in finding inverse of a matrix. Equivalence relations and partitions, Congruence modulo n, Definition of a group with examples and simple properties, Subgroups, Generators of a group, Cyclic groups, Coset decomposition, Lagrange's theorem and its consequences, Fermat and Euler theorems. Normal subgroups, Quotient groups.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNI	Homomorphism and isomorphism, Fundamental theorem of homomorphism, Theorems on isomorphism, Permutation groups, Even and odd permutations, The alternating group, Cayley's theorem, Direct products.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNI	Rings, types of rings (commutative rings, rings with unity, division rings, Integral domains and fields) with examples, basic properties, sub- rings, Characteristic of a ring, Ideals and quotient rings, Ring homomorphism, Isomorphism	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

Ti 1. 2. Si Ti W	theorems, Field of quotient of an integral domain, polynomial rings. eferences: ext Books: Linear Algebra by K. Hoffman and R. Kunze. V. Sahai and V. Bist, Algebra, Narosa enggested Readings: 3. J.B. Fraleigh, A First Course in Abstratopics in Algebra, John Wiley & Sons Teb References: Digital platforms web links: NPTEL/SWAYA ttps://openlearninglibrary.mit/edu/courses		FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL
<u>h</u>	ttp://heecontent.upsdc.gov.in/SearchContent.aspx ttps://www.lkouniv.ac.in/en/article/e-content-faculty-of-science	<u>ee</u>	

ACADEMIC CALENDAR : SESSION- (2023-2024)

NAME OF TEACHER: DR. POONAM BAJPAI

DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: BSC (NEP)-II YEAR (IV SEMESTER) (APPLICABLE FROM JANUARY 2024)

S.NO.	CLASS	PAPER	UNIT	TOPIC NAME	MONTHLY/W	TEACHING	LEARNING	ANY OTHER
-------	-------	-------	------	------------	-----------	----------	----------	-----------

BSC (NEP) IT YEAR, IV SEMESTER CREDITS-4 T:04 T:04 BSC (NEP) IT YEAR, IV SEMESTER CREDITS-4 T:04 BSC (NEP) IT YEAR, IV SEMESTER CREDITS-4 T:04 T:04 Definition of a sequence, theorems on limits of sequences, bounded and monotonic sequences, Cauchy's convergence criterion, Cauchy sequence, limit superior and limit inferior of a sequence, subsequence, subsequence, Series of non-negative terms, convergence and divergence, Comparison tests, Cauchy's integral test, Ratio tests, Root test, Rabe's logarithmic test, de Morgan and Bertrand's tests, alternating series, Leibnitz's theorem, absolute and conditional convergence. Sequences of functions: point wise and uniform convergence of sequences of sequences of uniform convergence of integration and series of functions, consequences of uniform convergence of sequences of uniform convergence of sequences of uniform convergence of uniform convergence of sequences of uniform convergence of sequences of uniform convergence of sequences of uniform convergence, integration and		(YEAR, SEMESTER)				EEKLY PLAN	PEDAGOGY	OUTCOMES	DETAIL				
T:04 Semester Credits-4 T:04 T:04 T:05 T:05	01		03	04	05	06	07	08	09				
T:04 Definition of a sequence, theorems on limits of sequences, bounded and monotonic sequences, Cauchy's convergence criterion, Cauchy sequence, limit superior and limit inferior of a sequence, subsequence, Series of non-negative terms, convergence and divergence, Comparison tests, Cauchy's integral test, Ratio tests, Root test, Raabe's logarithmic test, de Morgan and Bertrand's tests, alternating series, Leibnitz's theorem, absolute and conditional convergence. Sequences of functions: point wise and uniform convergence of sequences of uniform convergence, integration and Sequence of sequences of uniform convergence, integration and Sequence of sequences of uniform convergence, integration and Sequences of sequences of sequences of uniform convergence, integration and Sequences of sequences of sequences of uniform convergence, integration and Sequences of sequences of sequences of uniform convergence, integration and Sequences of sequences of sequences of uniform convergence, integration and Sequences of sequences of sequences of uniform convergence, integration and Sequences of sequences of sequences of uniform convergence, integration and Sequences of sequences of sequences of uniform convergence, integration and Sequences of sequences of sequences of uniform convergence, integration and Sequences of sequences of sequences of uniform convergence, integration and Sequences of sequences of sequences of uniform convergence, integration and Sequences of sequences of sequences of sequences of uniform convergence of sequences of uniform convergence of sequences of uniform convergence of sequences of uniform sequences of uniform convergence of sequences of uniform sequences of uniform sequences of sequences of uniform sequences of sequences of uniform sequences of sequences of sequences of sequences of uniform sequences of sequences	1	II YEAR,	(MAJOR)	1. To devel 2. To get ki	To develop mathematical skills in calculus and analysis. To get knowledge of Laplace Transforms and Fourier series.								
functions. UNIT-II Existence theorems for Laplace transforms. Linearity of Laplace transforms.		CREDITS-4		UNIT-I	Definition of a sequence, theorems on limits of sequences, bounded and monotonic sequences, Cauchy's convergence criterion, Cauchy sequence, limit superior and limit inferior of a sequence, subsequence, Series of non-negative terms, convergence and divergence, Comparison tests, Cauchy's integral test, Ratio tests, Root test, Raabe's logarithmic test, de Morgan and Bertrand's tests, alternating series, Leibnitz's theorem, absolute and conditional convergence. Sequences and series of functions: point wise and uniform convergence of sequences of functions, consequences of uniform convergence, integration and differentiation of series of functions. Existence theorems for Laplace transforms, Linearity of Laplace	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD) OFFLINE TEACHING METHOD	GET THE UNDERSTANDING OF THE TOPIC DISCUSSED. STUDENTS WILL GET THE UNDERSTANDING	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE EVALUATION THROUGH MONTHLY MOCK				

Te 1. 7 2. 1 Su; 3. Mc	References: Text Books: 1. T.M. Apostol. Mathematical Analysis, Pearson 2. RG Bartle, Introduction to Real Analysis, Wiley India Suggested Readings: 3. G.F. Simmons, Differential Equations with Applications and Historical Notes, Tata-McGraw Hill 4. A.S. Gupta, Calculus of Variations with Applications Prentice Hall India.					
UN	Calculus of variations-Variational problems with fixed boundaries-Euler's equation for functionals containing first order derivative and one independent variable, Extremals, Functionals dependent on higher order derivatives, Functionals dependent on more than one independent variable, Variational problems in parametric form.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	
UN	derivatives and integrals of a function, Convolution theorem, inverse Laplace transforms, Solution of the differential equations using Laplace transforms. [T-III] Fourier series, Fourier expansion of piecewise monotonic functions, Half and full range expansions, Fourier transforms (finite and infinite), Fourier integral.	MIN 09 LECTURES	VIDEO,CLASS ROOM TEACHING METHOD) OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	

	1			5	1 1777777 (0)						
				ences: Digital platforms web lir	•	WAYAM/ MOOCS/O	penstax.org				
				enlearninglibrary.mit/edu/cou							
				econtent.upsdc.gov.in/SearchCo							
				.lkouniv.ac.in/en/article/e-content-f	aculty-of-science	<u>:e</u>					
2	BSC (NEP) – II YEAR,	P-8	<u>Course Ou</u>								
	II I LAK,		1. The fundar	1. The fundamental concept of Rings, Fields, subrings, integral domains and the corresponding morphisms.							
	I V	(MAJOR)	2. The conce	pt of linear independence of vectors of	over a field, the	idea of basis and the din	nension of a vector	space.			
	SEMESTER		3. Basic cond	cepts of linear transformations, the F	Rank-Nullity Th	neorem, matrix of a line	ar transformation	and the change of			
	CREDITS-4		basis.								
			4. Automorp	hisms for constructing new groups fro	om the given gr	oup.					
	T:04 5. Group actions, Sylow theorems and their applications to check nonsimplicity.										
		LINEAR &	6. Compute	inner products and determine orthogo	onality on vecto	or spaces.					
		ABSTRACT ALGEBRA	UNIT-I	Automorphism, inner automorphism, automorphism groups and their computations, Conjugacy relations, Normaliser, Counting principle and the class equation of a finite group, Center of group of prime power order, simple groups, Group action, Burnside lemma, Sylow theorems and its applications.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILLGET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE			
			UNIT-II	Prime and maximal ideals, Euclidean Rings, Principal ideal rings, Polynomial Rings, Polynomial over the Rational Field, The Eisenstein Criterion, Polynomial Rings over Commutative Rings, unique factorization domain.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE			
			UNIT-III	Vector spaces, Subspaces, Linear independence and dependence of vectors, Basis and dimension,	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC	EVALUATION THROUGH MONTHLY MOCK TESTS AND			

				Quotient space, Linear transformations, Direct sums, The Algebra of linear transformations, rank nullity theorem, their representation as matrices, Linear functionals, Dual space, Characteristic values, Cayley Hamilton Theorem.		PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	DISCUSSED.	ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
			UNIT-IV	Inner product spaces, Cauchy-Schwarz inequality, Orthogonal vectors, Orthonormal sets and bases, Bessel's inequality for finite dimensional spaces, Gram-Schmidt orthogonalization process, Bilinear and Quadratic forms.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
			1. Topics in 2. Algebra by 3. Linear Alg Suggested 14. Linear Alg Web Refer https://ophttp://hee	References: Fext Books: Topics in Algebra by I. N. Herstein. Algebra by V. Sahai and V. Bist Linear Algebra by V. Sahai and V. Bist uggested Readings: Linear Algebra by K. Hoffman and R. Kunze. Web References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org ttps://openlearninglibrary.mit/edu/courses http://heecontent.upsdc.gov.in/SearchContent.aspx ttps://www.lkouniv.ac.in/en/article/e-content-faculty-of-science						
3	BSC (NEP) – II YEAR, IV	P-4 (MINOR)	Course Outcomes: 1. To learn and visualize the fundamental ideas of coordinate geometry. 2. To describe some surfaces by using analytical geometry.							
	SEMESTER CREDITS-4		3. To gain UNIT-I	knowledge about regular geometric General equation of second degree, System of conics,	ical figures and MIN 09 LECTURES	OFFLINE TEACHING METHOD	STUDENTS WILLGET THE UNDERSTANDING	EVALUATION THROUGH MONTHLY MOCK		

T:04	GEOMETRY		Tracing of conics, Confocal conics, Polar equation of conics and its properties.		(NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	OF THE TOPIC DISCUSSED.	TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
		UNIT-II	Three-Dimensional Coordinates, Projection and Direction Cosine, Plane (Cartesian and vector form), Straight line in three dimension (Cartesian and vector form).	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
		UNIT-III	Sphere, Cone and Cylinder.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
		UNIT-IV	Central conicoids, Paraboloids, Plane section of conicoids, Generating lines, Confocal conicoids, Reduction of second degree equation.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
		References Text Book		1	1	I	FINAL EVALUATION THROUGH

 P. R. Vittal, Analytical Geometry S. L. Loney, The Elements of Coordinate Geometry, Macmillan Suggested Readings: Robert J.T. Bell, Elementary Treatise on Coordinate Geometry of three dimensions, Macmillan India Ltd Web References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org 	INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL
https://openlearninglibrary.mit/edu/courses http://heecontent.upsdc.gov.in/SearchContent.aspx	
https://www.lkouniv.ac.in/en/article/e-content-faculty-of-science	

ACADEMIC CALENDAR: SESSION- (2023-2024)

NAME OF TEACHER: DR. POONAM BAJPAI

DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: BSC(NEP)-III YEAR (V SEMESTER) (APPLICABLE FROM SEPTEMBER 2023) EACH PAPER CARRIES 100 MARKS (4

CREDITS)

S.NO.	CLASS (YEAR, SEMESTER)	PAPER	UNIT	TOPIC NAME	MONTHLY/ WEEKLY PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL
01	02	03	04	05	06	07	08	09
I	the table.							
			numerical s UNIT-I UNIT-II	Solution of equations: bisection, Secant, Regular Falsi, Newton Raphson's method, Newton's method for multiple roots, Interpolation, Lagrange and Hermite interpolation, Difference schemes, Divided differences, Interpolation formula using differences. Numerical differentiation,	ELCTONES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			UNII-II	Numerical Quadrature: Newton	06 LECTURES	METHOD	GET THE UNDERSTANDING	THROUGH MONTHLY MOCK

UNIT-III	Cotes Formulas, Gaussian Quadrature Formulas, System of Linear equations: Direct method for solving systems of linear equations (Gauss elimination, LU Decomposition, Cholesky Decomposition), Iterative methods (Jacobi, Gauss Seidel, Relaxation methods). The Algebraic Eigen Value problem: Jacobi's method, Givens method, Power method. Numerical solution of Ordinary	MIN	(NOTES IN FORM OF PDF, AUDIO/VIDEO, CLASS ROOM TEACHING METHOD) OFFLINE TEACHING	OF THE TOPIC DISCUSSED.	TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
	Numerical solution of Ordinary differential equations: Euler method, single step methods, Runge-Kutta method, Multi-step methods: Milne-Simpson method, Types of approximation: Last Square polynomial approximation, Uniform approximation, Chebyshev polynomial approximation.	06 LECTURES	METHOD (NOTES IN FORM OF PDF,AUDIO/VIDEO,CLASS ROOM TEACHING METHOD)	GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-IV	Difference Equations and their solutions, Shooting method and Difference equation method for solving Linear second order differential equation with boundary conditions of first, second and third type.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
Reference F 1. Nun	Books: nerical Methods for Engineering and	scientific com	putation by M. K. Jain, S	5.R.K.	FINAL EVALUATION THROUGH

			2. Int Suggested 3. Kandasa Web Refer Digital plat https://ope http://heec	engar & R.K. Jain. roductory methods of Numerical Ana. Readings: amy P. & et Al., Numerical Methods, Serences: tforms web links: NPTEL/SWAYAMenlearninglibrary.mit/edu/courses content.upsdc.gov.in/SearchContent.asww.lkouniv.ac.in/en/article/e-content.	S. Chand & Co / MOOCS/Op	o. enstax.org		INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL
П	BSC (NEP) -III YEAR, V SEM CREDITS-4 T:04	P-10 ANALYSIS	2. Know th 3. Understa Riemann et 4. Evaluate 5. Expand apply Cauc UNIT-I	and the basic concepts of metric space ne concepts such as open balls, closed and the significance of differentiability	ty of compact ty of comple the role of Ca and Laurent s rals. MIN. 06 LECTURES	or valued functions leading uchy-Goursat theorem and eries, classify the nature of the control o	d the Cauchy integral of singularities, find students will get the understanding of the topic discussed.	al formula. residues and EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			UNIT-II	Stereographic projection, Continuity and Differentiability of complex functions, Analytic	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC	EVALUATION THROUGH MONTHLY MOCK TESTS AND

	functions, Cauchy Riemann equations, Harmonic functions.		PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	DISCUSSED.	ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-III	Complex integration, Cauchy-Goursat theorem, Cauchy's Integral formula, Formulae for first, second and nth derivatives, Cauchy's Inequality, Liouville's Theorem, Elementary functions, Mapping by elementary functions, conformal mapping.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-IV	Taylor and Laurent Series, Absolute and uniform convergence of Power series, Residues and Poles, Residue theorem, Zeros and poles of order m, Evaluation of improper real integrals, Definite integrals involving sines and cosines.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
Text book 1. MATHE 2. COMPL Suggested 3. Magnus Web Refer Digital plat https://oper http://heec	EMATICAL ANALYSIS BY SHANT EX VARIABLE AND APPLICATION Readings: Robert, Fundamental Mathematical A	ONS BY BROV analysis, Spring / MOOCS/Ope	ger Undergraduate Mathe	ematics Series	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

Ш	BSC (NEP) -III YEAR, V SEM CREDITS-4 T:04	P-11A INTEGRAL & PARTIAL DIFFERENTIAL EQUATIONS	formulation 2. Understa Hilbert and 3. Explain to of variables	e different types of Linear integral n of practical problems of applied mat and the theoretical basic behavior of Cauchy integral equations. the foundations of various problems r	chematics. f different typ related to Wave	es of arising problems so e, Laplace and Diffusion e hanics and mathematical p	uch as Fredholm, vequations by the me	Volterra, Singular, ethod of separation
			UNIT-1	Origin of first order partial differential equations. Partial differential equations of the first order and degree one, Lagrange's solution, Partial differential equation of first order and degree greater than one. Cauchy's method of characteristic, Charpit's method of solution, Surfaces orthogonal to the given system of surfaces.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			UNIT-II	Origin of second order PDE, Solution of partial differential equations of the second and higher order with constant coefficients, Classification of linear partial differential equations of second order, Solution of second order partial differential equations with variable coefficients, Monge's method of solution, Cauchy's problem for Homogenous wave equation, Properties of Harmonic	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

	function, Methods of separation of variable for solving Laplace, wave and diffusion equations.				
UNIT-III	Linear Integral Equations- Definition and Classification of conditions, Special kinds of Kernels, Eigen values and Eigen functions, Convolution integral, Inner product, Integral equations with separable Kernels. Reduction to a system of algebraic equations.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-IV	Fredholm alternative, Fredholm Theorem, Fredholm alternative theorem, Approximate method, Method of successive approximations, Iterative scheme. Solution of Fredholm and Volterra integral equation, Results about resolvent Kernel	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
Reference book: Text Books: 1. I.N. Sneddon: Elements of Partial Differential Equations, Mc -Graw Hill, 1988. 2. Ram P. Kanwal, Linear Integral Equations (2nd ed.), Birkhäuser, Boston.					
Delhi, 2005	nath: An Elementary Course in Parti 6. nt U: Partial Differential Equations of		-	-	

			https://open http://heeco https://www	gital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org ps://openlearninglibrary.mit/edu/courses tp://heecontent.upsdc.gov.in/SearchContent.aspx rps://www.lkouniv.ac.in/en/article/e-content-faculty-of-science							
ш	BSC (NEP) -III YEAR, V SEM CREDITS-4 T:04	P-11 B DISCRETE MATHEMATICS	1. Lattices and their types. 2. Boolean algebra, switching circuits and their applications. 3. Graphs, their types and its applications in study of shortest path algorithms. 4. Display familiarity with the mathematical models which are the integral part of the hardware and softwa science. 5. Elaborate and expand their understanding of the tools helpful in the implementation of circuit design, AI alg compiler construction.								
			UNIT-1	Propositional Logic- Proposition logic, basic logic, logical connectives, truth tables, tautologies, contradiction, normal forms (conjunctive and disjunctive), modus ponens and modus tollens, validity, predicate logic, universal and existential quantification, proof by implication, converse, inverse contrapositive, contradiction, direct proof by using truth table.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE			
			UNIT-II	Boolean Algebra- Basic definitions, Sum of products and products of sums, duality principle, Boolean functions, Logic gates and Karnaugh maps. Lattice, Duality, types of lattices, sublattices, bounded lattices, distributive lattices, complemented lattices, modular	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE			

	lattices, join irreducible elements.				
UNIT	Combinatorics- Inclusion-exclusion, recurrence relations (nth order recurrence relation with constant coefficients, Homogeneous recurrence relations, Inhomogeneous recurrence relations), generating function (closed form expression, properties of G.F., solution of recurrence relations using G.F. solution of combinatorial problem using G.F.)	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-		MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

			Reference book: Text books: 1. Discrete Mathematics by C. L.Liu. 2. Discrete Mathematics with computer application by Trembley and Manohar. 3. Mendelson, Elliott: Introduction to Mathematical Logic, Chapman & Hall, 1997 4. John E. Hoprcroft, Rajeev Motwani, Jeffrey D. Ullman: Introduction to Automata Theory, Languages and Computation, Pearson Education, 2000 Suggested Readings: 5. Arnold B. H.: Logic and Boolean Algebra, Prentice Hall, 1962 6. K. H. Rosen: Discrete Mathematics and its applications, MGH 1999 Web References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org https://openlearninglibrary.mit/edu/courses http://heecontent.upsdc.gov.in/SearchContent.aspx https://www.lkouniv.ac.in/en/article/e-content-faculty-of-science					
III	BSC (NEP) -III YEAR, V SEM CREDITS-4 T:04	P-II C NUMBER THEORY	2. Solving I	knowledge of primes, congruences, quippending functions and recurrence remarks theorem, Euler's theorem, Euler's theorem, Fermat's quotients and theirelementary consequences; Solutions of congruences; Chinese remainder theorem; Euler's phi-function. Congruences		OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

UNIT-II	Congruence modulo powers of prime; primitive roots and their existence; quadratic residues; Legendre symbol, Gauss' lemma about Legendre symbol; quadratic reciprocity law; proofs of various formulations; Jacobi symbol.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-III	Diophantine Equations, Solutions of $ax + by = c$, $xn + yn = zn$; properties of Pythagorean triples; sums of two, four and five squares; assorted examples of diophantine equations.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-IV	Generating Functions and Recurrence Relations, Generating Function Models, calculating coefficient of generating functions, Partitions, Exponential Generating Functions, A Summation Method. Recurrence Relations: Recurrence Relation Models, Divide and conquer Relations, Solution of Linear, Recurrence Relations, Solution of Inhomogeneous Recurrence Relations, Solutions with Generating Functions.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

Text books: 1. Niven, I., Zuckerman, H. S. and Montgomery, H. L. (2003) An Int. to the Theory of Numbers (6th edition) John Wiley and sons, Inc., New York.	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL
--	---

* NOTE: THERE WILL BE AN INTERNSHIP / TERM ASSIGNMENT IN V SEMESTER (NEP).

✓ Credit :04

ACADEMIC CALENDAR : SESSION- (2023-2024)

NAME OF TEACHER: DR. POONAM BAJPAI

DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: BSC(NEP)-III YEAR (VI SEMESTER) (APPLICABLE FROM JANUARY 2024) EACH PAPER CARRIES 100 MARKS (4

CREDITS)

S.I		LASS	PAPER	UNIT	TOPIC NAME	MONTHLY/	TEACHING	LEARNING	ANY OTHER		
		(EAR, IESTER)				WEEKLY PLAN	PEDAGOGY	OUTCOMES	DETAIL		
		02	03	04	05	06	07	08	09		
	I -III Y VI SI	EDITS-4	P-12 ADVANCED ALGEBRA	 Give the Construc Understa Determin 	Ourse Outcomes: Give the structure of an abelian group of a given order. Construct the splitting field extension of a given polynomial. Understand the interplay of group theory and field theory. Determine the minimal polynomial of an algebraic element.						
	1.0			UNIT-1	Series of groups, Schreier theorem, Jordan Holder theorem, solvable groups, Nilpotent groups, Insolvability of Sn for n>5,	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
				UNIT-1I	Finite Abelian groups, primary decomposition theorem, basis theorem, fundamental theorem of finite Abelian group, elementary divisors and invariant factors,	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		

			UNIT-1II	Field extensions: finite extension, finitely generated extension, algebraic extension, simple extension, transcendental extension, finite field.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			UNIT-1V	Splitting field, algebraically closed field, normal extension, separable extension, primitive element theorem. Galois theory-Galois group, Galois extension, Fundamental theorem of Galois theory, Artin's theorem, Fundamental theorem of algebra (Algebraic Proof)	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
п	BSC (NEP)	P.13	References: Text Books: 1. V. Sahai & V. Bist: Algebra, Fourth Edition, Narosa. 2. J. A. Gallian, Contemporary Abstract Algebra, 4th edition, Narosa 3. DJS Robinson, An Introduction to Abstract Algebra, Hindustan Book Agency. Suggested Readings: 4. J. B. Fraleigh: A first course in Abstract algebra, Narosa 5. S. Lang: Algebra, Addison Wesley. Web References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org https://openlearninglibrary.mit/edu/courses http://heecontent.upsdc.gov.in/SearchContent. https://www.lkouniv.ac.in/en/article/e-content-faculty-of-science					
П	BSC (NEP) -III YEAR, VI SEM CREDITS-4	P-13 DIFFERENTIAL GEOMETRY & TENSOR ANALYSIS	2. Understa	tcomes: he concept of differentiable geometry nd the concepts of tensors in differen rious concept of differential calculus	tiable geometr	y.		

T:04	UNIT-1	Local theory of curves-Space curves, Examples, Plane Curves, tangent and normal and binormal, Osculating Plane, normal plane and rectifying plane, Helices, Serret-Frenet apparatus, contact between curve and surfaces, tangent surfaces, involutes and evolutes of curves, Bertrand curves, Intrinsic equations, fundamental existence theorem for space curves.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
	UNIT-II	Metric-first fundamental form and arc length, Direction coefficients, families of curves, intrinsic properties, geodesics, canonical geodesic equations, normal properties of geodesics, geodesics curvature, Gauss-Bonnet theorem, Gaussian curvature, normal curvature, Meusneir's theorem, mean curvature, Gaussian curvature, Gaussian curvature, Gaussian curvature, Gaussian curvature, Gaussian curvature, Umbilic points, lines of curvature, Rodrigue's formula, Euler's theorem.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOC TESTS AND ASSIGNMENTS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE AND DISCUSSIONS
	UNIT-III	Tensor algebra: Vector spaces, the dual spaces, tensor product of vector spaces, transformation formulae, contraction, special tensor, inner product, associated tensor. Tensor Analysis: Contravariant and covariant vectors and tensors, Mixed tensors,	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

UNIT-IV	Symmetric and skew-symmetric tensors, Algebra of tensors, Contraction and inner product, Quotient theorem, Reciprocal tensors, Christoffel's symbols, Covariant differentiation. Gradient of scalars, Divergence of a contra-variant vector, covariant vector and conservative vectors, Laplacian of an invariant, curl of a covariant vector, irrotational vector, Riemannian space, Riemannian curvatures and their properties, Ricci tensor, and scalar curvature, Einstein space and Einstein tensor, Geodesics.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
2. S.Lang., 3. B. O'Neil 4. R.S. Misl Pothishala Suggested 5. David C. Web Refer Digital plat https://ope	more, An introduction to Differential Fundamentals of Differential Geometry, Elementary Differential Geometry, A Course in Tensors with 1988. Readings: Kay, Tensor Analysis, Schaur	Geometry; S metry, 2nd I Application n's Outline s YAM/ MOO urses ontent.aspx	Springer, 1999. Edition, Academic pre to Riemannian Geon series McGraw Hill 19 CS/Openstax.org	ess, 2006. netry,	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

Ш	BSC (NEP) -III YEAR, VI SEM CREDITS-4 T:04	P-14 A ADVANCED DIFFERENTIAL EQUATIONS	differenti equations 2. Concep	he system of 1st order differen al equations, oscillatory equati	on, stability	and unstability of lin	ear and non-lin	ear system of
			UNIT-1	Linear System- Introduction, properties of linear homogeneous systems, Abel-Liouville formula, Periodic linear System, Floquet's theorem, Solution of nth order linear homogeneous equation with variable coefficients.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			UNIT-II	Inhomogeneous linear system, nth order linear non-homogeneous equation with variable coefficients, Hurwitz's theorem, Non-linear system, Volterra's prey & predator equation, Non linear equations: Autonomous system.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			UNIT-III	The phase plane & its phenomena, types of critical points & Stability, Critical points & stability for linear system, stability by Liapunov's direct method. Green function, Construction of Green functions, Green function of homogeneous	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

S	and non-homogeneous end conditions, Strum Liouville systems.				
e F c r	Second order differential equation: Introduction, Preliminary results, Boundedness of solutions, Oscillatory equation, number of zeroes, Pruffer's transformation, Strum theorem, Strum's comparison theorem.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
REFERENCE BOOK: Text books: 1. G. F. Simmons: Differential Equation, Tata McGraw-Hill 2. B. Rai, D. P. Chaudhary, H.I. Freedman: A course in Ordinary Differential Equations, Narosa Publishing House. 3. S. L. Ross: Differential Equations, Wiley Indian, 2004					
Web Refere Web Refere Digital plat: https://ope http://hee	oddington: An Introduction nces:	YAM/ MOOO urses Content.aspx	CS/Openstax.org	ations	

Ш	BSC (NEP) -III YEAR, VI SEM CREDITS-4 T:04	P-14 B OPERATIONS RESEARCH	2. Be able t3. Be able tand objectiv4. to take b	o understand the application of OR as to build and solve Transportation and to design and solve simple models of the analysis of decision problems. Dest course of action out of several as sequencing models.	Assignment processing CPM and que	roblems using appropriate euing to improve decision	making and develo	
		UN	UNIT-1	Linear programming problems, Slack and surplus variables, Statement of general Linear programming Problems, Standard and matrix forms of linear programming problem, Basic feasible solution.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			UNIT-II	Convex sets, Fundamental theorem of linear programming, Simplex method. Artificial variables, Big-M method, Twophase method, Revised simplex method.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			UNIT-III	Resolution of degeneracy, Duality in linear programming problems, Dual simplex method, Primal-dual relation analysis, integer programming.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

UNIT-IN	Transportation problems, assignment problems, Queuing Theory, Markov Chains, PERT and CPM, Optimization and constrained Optimization using Langrange's Multiplier.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
Text book 1. Hamour 2. Kanti 29 Suggesi 3. G. Hawar 4. Web Rest 2. Digital 3. https://	dy A. Taha, Operations Research: Swaroop, P. K. Gupta, Manmoha ted Readings: Idley, Linear Programming ferences: platforms web links: NPTEL/SWA openlearninglibrary.mit/edu/con heecontent.upsdc.gov.in/Searcho //www.lkouniv.ac.in/en/article	n, Operation YAM/ MOOurses Content.aspx	ns Research, Sultan C CS/Openstax.org <u>s-faculty-of-science</u>		FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL
❖ NOTE: THERE WILL BE A M	INOR PROJECT IN VI SEM	ESTER (NI	EP).		